

ersity Faculty of Diploma Studies Information and Communication Technology

Subject Code: 09CT0403 Subject Name: Data Structure and Algorithm design **Diploma Year – II (Semester IV)**

Objective: After completion of this course, student will be able to:

- 1. learn efficient storage mechanisms of data for an easy access.
- 2. design and implementation of various basic and advanced data structures.
- 3. introduce various techniques for representation of the data in the real world.
- 4. develop application using data structures.
- 5. teach the concept of protection and management of data.
- 6. improve the logical ability

Credits Earned: 2 Credits

Course Outcomes: After completion of this course, student will be able to:

- 1. Understand the linear and nonlinear data structures.
- 2. Interpret appropriate sorting and searching technique for given problem.
- 3. Describe stack, queue and linked list operation.
- 4. Design/Develop programof the above data structures.
- 5. Analyse and compare algorithms for efficiency using Different techniques

Pre-requisite of course:Basic knowledge of C language

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credits	Theory Marks		Tutorial/Practical Marks		Total Marks	
Theory	Tutorial	Practical		ESE	IA	CSE	Viva	Term Work (TW)	
0	0	4	2	00	30	20	25	25	100

Contents:

S.NO	ΤΟΡΙϹ			
1	Introduction to Data Structure Types of Data Structure, Arrays, Strings, Recursion, Introduction and operation of Files			
2	Linked List Introduction to Linked List, Hierarchy of LinkedList, Doubly Linked List, Constructor and Method of LinkedList, Operation of Linked List, Linked List Vs. Arrays, Application of Linked List polynomial	8		
3	STACK Introduction to Stack, Basic features of Stack,Implementation of Stack Data Structure, Algorithm of PUSH, POP and PEEPoperation. Application of stack – Recursion, Polish Notation.	8		
4	Queues Introduction to Queue, Basic features of Queue, Implementation of Queue Data Structure, Type of queue-simple queue, circular queue, double ended queue(dequeue), Operation of Queue insertion and deletion, application of queue.	8		
5	Trees Basic trees concept, Binary tree representation, Binary tree operation, Binary tree traversal (in-order, pre-order, post-order), and Binary search tree implementation	8		
6	 Sorting: Sort Concept, Selection sort, Bubble sort, insertion sort, Radix sort, Insertion Sort, Quick Sort, and Merge sort Searching: List Search, Linear Index Search, Sequential search, Binary Search 	8		
7	Hashing: Introduction to Hashing table, building Hashing function, Introduction and handling of collision in hashing, different types of collision resolution techniques, application of hashing	8		

Total Hours

56

Suggested List of Experiment:

Sr.	Unit	PracticalExercises	
No.	No.		Hrs.
			Required
1	1	Definevarioustermssuchasalgorithm, various approaches to	2
		designanalgorithm, timecomplexity, spacecomplexity, big'o'	
		notation, bestcase, average case and worst-case time complexity etc.	
		Developsimpleprogramusingpointertoastructure	
2	1	Develop simple program using pointer to structure.	1
3	1	Implementarrayusing rowmajororderandcolumnmajororder	2
4	1	write a program to find largest number.	
5	3	Implement recursive functions : Factorial using Recursive.	
6	1	Implementvariousstring algorithms	2
7	3	Implement push and pop algorithms of stack using array.	2
8	4	Implement insert, delete algorithms of queue using array.	2
9	4	Implement insert, delete algorithms of circular queue using array.	2
10	4	Implement insert, delete algorithms of doubly queue using array.	
11	5	Implement construction binary search tree	1
12	5	Implement inorder traversal method.	1
13	5	Implement preorder traversal method	1
14	5	Implement postorder traversal method	1
15	6	Implement seaching algorithm in binary search tree.	1
16	6	Implement bubble sort algorithm.	1

17	6	Implement selction sort algorithm.	1
18	6	Implement insertion sort algorithm.	1
19	6	Implement quick sort algorithm.	1
21	6	Implement Merge Sort algorithm	1
22	7	Solve hash table example using division method, method square method, folding method (paper work only)	2
23	7	Implement construction of binary search tree	1
25	7	Implement searching algorithm in binary search tree	1
		Total	28

Suggested Text book/Main Reference:

- 1. Data Structures & Algorithms in Java, Robert Lafore, Pearson education, 2nd edition
- 2. Algorithms in Java, Robert Sedgewick with java consulting by Michael schidlowsky, Pearson education, 3rd edition.
- 3. Data Structures and Algorithms in Java, Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, WILEY, Sixth edition.

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyse	Evaluate	Create	
40%	40%	10%	10%	0	0	

Supplementary Resources:

- a) http://www.nptelvideos.in/2012/11/programming-and-data-structure.html
- b) http://www.nptelvideos.in/2012/11/data-structures-and-algorithms.html
- c) http://www.geeksforgeeks.org/data-structures/
- d) https://www.hackerrank.com/domains/data-structures/arrays