

Syllabus for Masters of Technology

Computer Engineering

Subject Code: 01CO1301

Subject Name: Advance Machine Learning

M. Tech. Year - II

Objective: This course will introduce key concepts in pattern recognition and machine learning; including specific algorithms for classification, regression, clustering and probabilistic modeling. In summary, this course will provide a broad view of the general issues arising in the application of algorithms to analyzing data, common terms used, and common errors made if applied incorrectly.

Credits Earned: 4 Credits

Course Outcomes:

At the end of the course, students will be able to:

- To understand key concepts, tools and approaches for pattern recognition on complex data sets
- To learn Kernel methods for handling high dimensional and non-linear patterns
- To implement state-of-the-art algorithms such as Support Vector Machines and Bayesian networks
- To Solve real-world machine learning tasks: from data to inference
- To apply theoretical concepts and the motivations behind different learning frameworks

Teaching	g Scheme (l	Hours)	Credits	TI	neory Mar	ks	Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical		ESE (E)	IA	CSE	Viva (V)	Term work (TW)	Marks
3	0	2	4	50	30	20	25	25	150

Teaching and Examination Scheme

Computer Engineering

Content:

Sr. No.	Topics			
		Hours		
1	Key concepts			
	Supervised/Unsupervised Learning, Loss functions and generalization,			
	Probability Theory, Parametric vs Nonparametric methods, Elements			
	of Computational Learning			
	Theory Ensemble Learning, Bagging, Boosting, Random Forest			
2	Kernel Methods for non-linear data, Support Vector			
	Machines, Kernel Ridge Regression, Structure Kernels,			
	Kernel PCA, Latent Semantic Analysis			
3	Bayesian methods for using prior knowledge and data, Bayesian			
	inference, Bayesian Belief Networks and Graphical			
	models, Probabilistic Latent Semantic Analysis, The Expectation-			
	Maximisation (EM) algorithm, Gaussian Processes			
4	Dimensionality Reduction - CCA, LDA, ICA, NMF -			
	Canonical Variates - Feature Selection vs Feature Extraction			
5	Filter Methods - Sub-space approaches - Embedded methods Low-			
	Rank approaches - Recommender Systems .Application areas -			
	Security - Business - Scientific			
6	Recent trends in supervised and unsupervised learning algorithm,			
	dimensional reducibility, feature selection and extraction			
	Total Hours			

Reference Books:

- 1. Pattern Recognition and Machine Learning, Christopher M. Bishop
- 2. John Shawe-Taylor and NelloCristianini, Kernel Methods for Pattern Analysis.
- 3. The Elements of Statistical Learning, Springer 2009
- 4. Machine Learning Algorithms, 2nd Edition, Giuseppe Bonaccorso, Packt Publication
- 5. TensorFlow Machine Learning, Nick McClure, Packt Publication

Computer Engineering

List of Open Source Software/learning website:

- https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learndata-science-pythonscratch-2/
- https://www.springboard.com/resources/learning-paths/machine-learningpython
- https://www.rstudio.com/online-learning/