DEPARTMENT OF ELECTRICAL ENGINEERING

Subject Code: 01PEED0109

Subject Name: Computer Aided Modelling and Analysis of Electrical Machine

MTech. Year – 1 (Semester – 1)

Objective: The objective of this course is to introduce learner to dynamic modelling of electrical machine and implement computer-based model of machine

Credits Earned: 1 Credits

Course Outcomes: After completion of this course, student will be able to

- > **Develop** mathematical model of different electrical machine.
- > **Design** mathematical model of machine in software tool
- > Analyse the generalised performance of machine in software
- > Analyse the performance of machine under various dynamics condition

Pre-requisite of course: Electrical Machine, MATLAB, Ordinary Differential Equations

Teaching Scheme (Hours)				Theory Marks			Tutorial/ Practical Marks		T - (- 1
Theory	Tutorial	Practical	Credits	ESE (E)	Mid Sem (M)	Internal (I)	Viva (V)	Term work (TW)	Total Marks
0	0	2	1	0	0	0	25	25	50

Teaching and Examination Scheme

Contents:

Contents.						
Unit	Topics					
1	Principles of Electromagnetic Energy Conversion: Basics of magnetic circuits, General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly excited system.	3				
2	Reference Frame Theory Transformation of variables, three phase to two phase transformation, Static and rotating reference frames, transformation relationships, examples using static symmetrical three phase R, R-L, R-L-L and R-L-C circuits, application of reference frame theory to three phases symmetrical induction, synchronous machines and advance machine.	3				
3	Modelling of Induction Machines: Voltage equation in machine variables, flux-linkage equation in machine variables, torque equation in machine variable, voltage equation in arbitrary reference frame, flux-linkage equation in arbitrary reverence frame, torque equation in arbitrary reference frame, dynamic dq equivalent circuit of induction machine, per unit representation of induction machine model, analysis of steady-state operation, free					

DEPARTMENT OF ELECTRICAL ENGINEERING

	acceleration characteristics, computer simulation of induction machine in arbitrary reference frame.	
4	Modelling of Permanent Magnet Synchronous MachinesConstruction and operating principle, Surface permanent magnet and interiorpermanent magnet machines, real-time model of a two-phase PMSM, transformationto rotor reference frames, three-phase to two-phase transformation, unbalancedoperation, zero sequence inductance derivation, power equivalence, electromagnetictorque, steady-state torque characteristics, models in flux linkages, equivalent circuits	5
5	Permanent Magnet Brushless DC Motor:Construction and operating principle, PM Brushless DC Machine, Modelling of PMBrushless DC Motor, Normalized System Equations, The PMBLDC Motor DriveScheme	5
	Total Hours	28

References:

- 1. Paul C. Krause, Oleg Wasynczuk and Scott D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, New York, 2004.
- 2. Charles Kingsley, Jr., A.E. Fitzgerald, Stephen D.Umans "Electric Machinery", Tata McGraw Hill, Fifth Edition, 1992.
- 3. ONG, Chee-Mun, "Dynamic Simulation of Electric Machinery using MATLAB", Prentice Hall PTR
- 4. Generalized theory of electrical machines by P S Bimbhra, 5th edition, Khanna Publishers Delhi
- 5. R. Krishnan, "Electric Motor & Drives: Modeling, Analysis and Control", Prentice Hall of India, 2001.
- 6. Ned Mohan, "Advanced electrical drives Analysis, Control and Modeling using Simulink", MNPERE, Minneapolis, USA, 2001.
- 7. C.V.Jones, "The Unified Theory of Electrical Machines", Butterworth, London, 1967.
- 8. Miller, T.J.E. "Brushless permanent magnet and reluctance motor drives" Clarendon Press, Oxford, 1989.
- 9. O'Simmons and Kelly, "Introduction to Generalized Machine Theory". McGraw-Hill, 1968
- 10. Hancock, "Matrix Analysis of Electric Machinery". Pergamon, Oxford, U.K., 1964
- 11. Mrittunjay Bhattacharyya, "Electrical Machines : Modelling and Analysis" Prentice Hall
- 12. J. Meisel, "Principles of Electromechanical Energy Conversion" McGraw Hill, 1966.

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyze	Evaluate	Create	
5%	10%	15%	30%	20%	30%	

DEPARTMENT OF ELECTRICAL ENGINEERING

Suggested List of Experiments:

- 1. Modelling and simulation of variable frequency oscillator in MATLAB
- 2. Modelling and simulation of series-parallel RLC circuit
- 3. To implement change of variables $(3 \phi \text{ to } 2 \phi)$ in MATLAB simulation
- 4. To implement change of variables $(2 \varphi \text{ to } 3 \varphi)$ in MATLAB simulation
- 5. To implement flux equation of induction machine in arbitrary reference frame in MATLAB simulation.
- 6. To implement current equation of induction machine in arbitrary reference frame in MATLAB simulation
- 7. To implement torque equations of induction machine in arbitrary reference frame variable in MATLAB
- 8. To simulate and observe free acceleration characteristics of induction machine
- 9. To observe dynamic performance of induction machine during sudden changes in load torque
- 10. Simulation of BLDC motor
- 11. Analyze the dynamic performance of PMSM

Web-Link

- 1. nptel.ac.in/courses/108106023/
- 2. http://people.ece.umn.edu/users/riaz/