

Syllabus for Master of Technology Department of Mechanical Engineering

Subject Code: 01TH0102

Subject Name: Advanced Thermodynamics and Heat Transfer

M. Tech. Ist Year Semester: I

Type of course: Post Graduate

Prerequisite: Engineering Thermodynamics, Heat Transfer.

Rationale: The course is prepared to provide the detailed understanding of laws and principles of Thermodynamics and Heat Transfer.

Course Outcome:

After learning the course, the students will be competent to

- 1. Apply entropy principle to various thermal engineering applications.
- 2. Apply the concept of second law efficiency and exergy principle to various thermal engineering applications.
- 3. Analyze steady state and transient heat conduction problems of real life Thermal systems.
- 4. Analyze extended surface heat transfer problems and problems of phase change heat transfer like boiling and condensation.
- 5. Analyze radiation heat transfer problems of various thermal systems.
- 6. Use of software (like EES) for solving thermodynamic and heat transfer problems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					
				Theory Marks			Practical Marks		Total
L	Т	Р	С	ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3	2	0	4	50	30	20	25	25	150

Content:

Sr. No.	Content	Total Hrs.		
1	Entropy: A Measure of Disorder: Increases of entropy principle and its application, Tds relation, entropy change of solid, liquid and ideal gas, entropy transfer with heat transfer, entropy generation in open and closed system, entropy balance			
	decrease of exergy principle and exergy destruction, applications of Gouy–Stodola theorem, exergy balance for steady flow and closed processes, second law efficiency Law of Corresponding States.			

Syllabus for Master of Technology Department of Mechanical Engineering

2	Conduction: Conduction Rate Equation, Heat Diffusion Equation, Boundary and Initial Conditions, General conduction Equation, Conduction with Heat Generation, Extended Surfaces with Uniform and Non Uniform Cross Sections, Two Dimensional Steady State Conduction: Mathematical, Graphical and Numerical Analysis of Two Dimensional Heat Conduction Unsteady State Conduction: Lumped Parameter Analysis, Numerical Solutions, Heisler and Semi Analytical Analysis	12
3	 Convection: Different Types of Flow and Boundary Layers, Flow Through Tubes, Flow Over Flat Plates, Cylinders, Spheres and Tube Blanks, Free Convection on Flat Surfaces, Cylinders, Spheres and Enclosed Spaces Heat Transfer during Phase Transformation: Boiling: Pool Boiling and its Correlations, Forced Convection Boiling, Condensation: Laminar and Turbulent Film Condensation, Film Condensation in Radial Surfaces and Horizontal Tubes, Heat Pipe 	12
4	Radiation: Radiation Intensity, Blackbody Radiation, Emission from Real Surfaces Radiation Combine with Conduction and Convection, Radiation Exchange with Participating Media, Radiative exchange and overall heat transfer in furnaces	07

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E Level	C Level
10	10	20	15	25	20

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyse, E: Evaluate C: Create

List of Experiments:

- 1. Heat conduction through plane and composite wall solving using ANSYS.
- 2. Heat conduction through hollow and composite cylinder using ANSYS.
- 3. To determine convective heat transfer co-efficient of the fin under natural convection.
- 4. To determine convective heat transfer co-efficient of the fin under forced convection.
- 5. To study drop & film wise condensation & determine the film co-efficient.
- 6. Thermodynamics problem solving using energy equation solver.
- 7. To determine total energy transfer for transient heat transfer apparatus.
- 8. Analysis of flow through pipe using ANSYS.

Reference books:

- 1. Thermodynamics An Engineering Approach by Yunus Cengel & Boles, McGraw-Hill Publication, New Delhi
- 2. Fundamentals of Thermodynamics by Sonntag, Borgnakke & Van Wylen, John Wiley & Sons (Asia) Pvt. Ltd.
- 3. Engineering Thermodynamics by P.K. Nag, McGraw-Hill, New Delhi
- 4. Fundamentals of Heat and Mass Transfer, by Incropera, Dewitt, John Wiley & Sons (Asia) Pvt. Ltd.
- 5. Heat Transfer by J P Holman, McGraw-Hill Publication, New Delhi
- 6. A Heat Transfer Textbook by J H Lienhard, Phlogiston Press

List of Open Base Software/learning website:

- 1. nptel.ac.in
- 2. www.learnerstv.com
- 3. cosmolearning.org