

Syllabus for Master of Technology Department of Mechanical Engineering

Subject Code: 01TH0304

Subject Name: Exergy Analysis of Thermal System

MTech. IInd Year Semester: III

Type of course: Post graduation

Prerequisite: Nil

Rationale: The course is design to impart detailed study of exergy analysis of various thermal systems and exergy-economics

Course Outcome:

After learning the course, the students will be competent to,

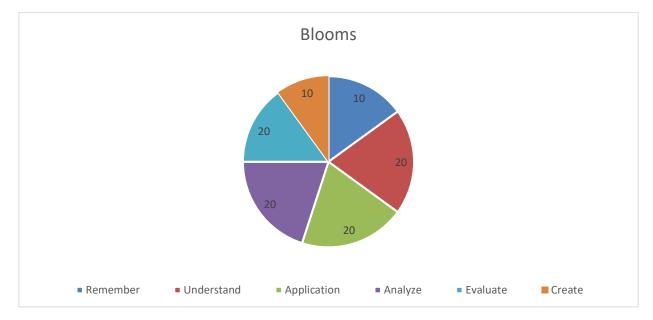
- 1. To make calculations for heat engines, refrigeration system and heat pump in terms of exergy and lost work.
- 2. To examine various thermal process with exergy view point.
- 3. To assess exergy analysis for various power plant cycles.
- 4. To apply exergy analysis for refrigeration system
- 5. To compute exergy-economics costing of thermal components.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					
				Tł	Theory Marks			Practical Marks	
L	Т	Р	С	ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	Total Marks
3	2	0	4	50	30	20	25	25	150

Content:

Sr. No.	Content	Total Hrs.
1	Exergy Destruction: Lost available work referred to heat engine cycle, refrigeration cycle, heat pump cycle, non-flow and steady flow processes, Mechanism of exergy destruction, modified Gouy-Stodola theorem, concept of effective temperature	05


Syllabus for Master of Technology Department of Mechanical Engineering

2	Exergy Analysis of Simple Processes: Mixing and separation process of fluids of different temperature, heat transfer across a temperature difference, expansion and compression process, combustion process	09
3	Exergy Analysis of Power Plant Cycles: Maximum power subject to size constraint with fixed heat input and its application to Brayton cycle, Steam turbine power plants: External and internal irreversibility, superheater, reheater, vacuum condenser, regenerative feed water heating, combined feed water heating and reheating Gas turbine power plant: External and internal irreversibility, regeneration, reheater, and intercooler, combined steam and gas turbine power plant	14
4	Exergy analysis of Refrigeration cycle: Joule-Thomson Expansion, Work-Producing Expansion, Brayton Cycle, Optimal Intermediate Cooling, Exergy analysis of Air- conditioning applications: Mixtures of air and water vapour, total flow exergy of humid air and liquid water, Evaporative cooling process and other aspects	08
5	Creep and Damping - Exergy-economic Analysis: Fundamental of exergy-economics, exergy costing of different thermal components: steam or gas turbine, boiler, cogeneration system	06

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E Level	C Level
10	20	20	20	20	10

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyse, E: Evaluate C: Create

Reference books:

- 1. Design and optimization of thermal systems, Y Jaluria, McGraw Hill.
- 2. Advanced Engineering Thermodynamics by Adrian Bejan, John Wiley & Sons, Inc.
- 3. The Exergy Method of Thermal Plant Analysis by T J Kotas, Krieger Publishing Company
- 4. Thermal Design and Optimization by Adrian Bejan, George Tsatsaronis, Michael Moran, John Wiley & Sons, Inc.
- 5. Advance Thermodynamics for Engineers by Winterbore D E, Arnold Publication
- 6. Advanced Thermodynamics for Engineers by Kenneth Wark, McGraw Hill Publishing Co. Ltd.
- 7. Fundamentals of Engineering Thermodynamics by Michel J Moran, Howard N Shapiro, Daisie D Boettner, Margaret B Bailey, John Wiley & Sons, Inc.

List of Open BaseSoftware/learning website:

- 1. Students can refer to video lectures available on the websites including NPTEL.
- 2. Students can refer to the CDs which are available with some reference books for the solution of problems using software/spreadsheets.